

Welcome to IOV Weave’s documentation!

[image: Weave Logo]
IOV Weave [https://github.com/iov-one/weave]
is a framework to quickly build your custom
ABCI application [https://github.com/tendermint/abci]
to power a blockchain based on the best-of-class BFT Proof-of-stake
Tendermint consensus engine [https://tendermint.com].
It provides much commonly used functionality that can
quickly be imported in your custom chain, as well as a
simple framework for adding the custom functionality unique
to your project.

Some of the highlights of Weave include a Merkle-tree backed data store,
a highly configurable extension system that also applies to the core logic such
as fees and signature validation. Weave also brings powerful customizations
initialised from the genesis file. In addition there is a simple ORM
which sits on top of a key-value store that also has proveable secondary indexes.
There is a flexible permissioning system to use contracts as first-class actors,
“No empty blocks” for quick synchronizing on quiet chains,
and the ability to introduce “product fees” for transactions that need to
charge more than the basic anti-spam fees. We have also added support for
“migrations” that can switch on modules, or enable logic updates, via
on-chain feature switch transactions.

Existing Modules

	Module

	Description

	Cash [https://github.com/iov-one/weave/tree/master/x/cash]

	Wallets that support fungible tokens and fee deduction functionality

	Sigs [https://github.com/iov-one/weave/tree/master/x/sigs]

	Validate ed25519 signatures

	Multisig [https://github.com/iov-one/weave/tree/master/x/multisig]

	Supports first-class multiple signature contracts, and allow modification of membership

	AtomicSwap [https://github.com/iov-one/weave/tree/master/x/aswap]

	Supports HTLC for cross-chain atomic swaps, according to the IOV Atomic Swap Spec [https://github.com/iov-one/iov-core/blob/master/docs/atomic-swap-protocol-v1.md]

	Escrow [https://github.com/iov-one/weave/tree/master/x/escrow]

	The arbiter can safely hold tokens, or use with timeouts to release on vesting schedule

	Governance [https://github.com/iov-one/weave/tree/master/x/gov]

	Hold on-chain elections for text proposals, or directly modify application parameters

	PaymentChannels [https://github.com/iov-one/weave/tree/master/x/paychan]

	Unidirectional payment channels, combine micro-payments with one on-chain settlement

	Distribution [https://github.com/iov-one/weave/tree/master/x/distribution]

	Allows the safe distribution of income among multiple participants using configurations. This can be used to distribute fee income.

	Batch [https://github.com/iov-one/weave/tree/master/x/batch]

	Used for combining multiple transactions into one atomic operation. A powerful example is in creating single-chain swaps.

	Validators_

	Used in a PoA context to update the validator set using either multisig or the on-chain elections module

	NFT [https://github.com/iov-one/weave/tree/master/x/nft]

	A generic Non Fungible Token module

	NFT/Username [https://github.com/iov-one/weave/tree/master/cmd/bnsd/x/nft/username]

	Example nft used by bnsd. Maps usernames to multiple chain addresses, including reverse lookups

	MessageFee [https://github.com/iov-one/weave/tree/master/x/msgfee]

	Validator-subjective minimum fee module, designed as an anti-spam measure.

	Utils [https://github.com/iov-one/weave/tree/master/x/utils]

	A range of utility functions such as KeyTagger which is designed to enable subscriptions to database.

In Progress

Light client proofs, custom token issuance and support for IBC (Inter Blockchain Communication) are currently being designed.

Basic Blockchain Terminology

If you are new to blockchains (or Tendermint), this is a
crash course in just enough theory to follow the rest of the setup.
Read all

Immutable Event Log

If you are coming from working on typical databases, you can think
of the blockchain as an immutable
transaction log [https://en.wikipedia.org/wiki/Transaction_log] .
If you have worked with
Event Sourcing [https://martinfowler.com/eaaDev/EventSourcing.html]
you can consider a block as a set of events that can always be
replayed to create a materialized view [https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view] .
Maybe you have a more theoretical background and recognize that a blockchain
is a fault tolerant form of
state machine replication [https://en.wikipedia.org/wiki/State_machine_replication#Ordering_Inputs] .
Read more

General Purpose Computer

Ethereum pioneered the second generation of blockchain, where they
realized that we didn’t have to limit ourselves to handling payments,
but actually have a general purpose state machine.
Read more

Next Generation

Since that time, many groups are working on “next generation” solutions
that take the learnings of Ethereum and attempt to build a highly scalable
and secure blockchain that can run general purpose programs.
Read more

Eventual finality

All Proof-of-Work systems use eventual finality, where the resource cost
of creating a block is extremely high. After many blocks are gossiped,
the longest chain of blocks has the most work invested in it,
and thus is the true chain.
Read more

Immediate finality

An alternative approach used to guarantee constency comes out of
academic research into Byzantine Fault Tolerance from the 80s and 90s,
which “culminated” in PBFT [http://pmg.csail.mit.edu/papers/osdi99.pdf] .
Read more

Authentication

One interesting attribute of blockchains is that there are no
trusted nodes, and all transactions are publically visible
and can be copied.
Read more

Upgrading the state machine

Of course, during the lifetime of the blockchain, we will want
to update the software and expand functionality. However,
the new software must also be able to re-run all transactions
since genesis.
Read more

UTXO vs Account Model

There are two main models used to store the current state.
The main model for bitcoin and similar chains is called UTXO, or Unspent transaction output.
The account model creates one account per public key address and stores the information there.
Read more

Merkle Proofs

Merkle trees are like binary trees, but hash the children at
each level. This allows us to provide a
proof as a chain of hashes [https://www.certificate-transparency.org/log-proofs-work].
Read more

Running an Existing Application

A good way to get familiar with setting up and running an application is to
follow the steps in the mycoin sample application.
You can run this on your local machine. If you don’t have a modern Go development environment
already set up, please follow these instructions.

To connect a node to the BNS testnet on a cloud server,
the steps to set up an instance on Digital Ocean are explored
in this blog post [https://medium.com/iov-internet-of-values/a-guide-to-deploy-a-validator-on-hugnet-3335192e11d5].

Once you can run the blockchain, you will probably want to connect with it.
You can view a sample wallet app for the BNS testnet at https://wallet.hugnet.iov.one
Those that are comfortable with Javascript, should check out our
IOV Core Library which allows easy access to the blockchain
from a browser or node environment.

Configuring your Blockchain

When you ran the mycoind tutorial, you ran the following lines
to configure the blockchain:

tendermint init --home ~/.mycoind
mycoind init CASH bech32:tiov1qrw95py2x7fzjw25euuqlj6dq6t0jahe7rh8wp

This is nice for automatic initialization for dev mode, but for
deploying a real network, we need to look under the hood and
figure out how to configure it manually.

Tendermint Configuration

Tendermint docs provide a brief introduction to the tendermint cli.
Here we highlight some of the more important options and
explain the interplay between cli flags, environmental variables,
and config files, which all provide a way to customize
the behavior of the tendermint daemon.
Read More

Application State Configuration

The application is fed genesis.json the first time it starts up
via the InitChain ABCI message. There are three fields that
the application cares about: chain_id, app_state,
and validators. To learn more about these fields
Read More

Setting the Validators

Since Tendermint uses a traditional BFT algorithm to reach
consensus on blocks, signatures from specified validator keys
replace hashes used to mine blocks in typical PoW chains.
This also means that the selection of validators is an extremely
important part of the blockchain security.
Read More

Building your own Application

Before we get into the strucutre of the application, there are
a few design principles for weave (but also tendermint apps in general)
that we must keep in mind.

Determinism

The big key to blockchain development is determinism.
Two binaries with the same state must ALWAYS produce
the same result when passed a given transaction.
Read More

Abstract Block Chain Interface (ABCI)

To understand this design, you should first understand
what an ABCI application is and how that level blockchain
abstraction works. ABCI is the interface between the
tendermint daemon and the state machine that processes
the transactions, something akin to wsgi as the interface
between apache/nginx and a django application.
Read More

Persistence

All data structures that go over the wire (passed on any
external interface, or saved to the key value store),
must be able to be serialized and deserialized. An
application may have any custom binary format it wants,
although all standard weave extensions use protobuf.
Read More

Additional Reading

We are in the process of doing a large overhaul on the docs.
Until we are finished, please look at the
older version of the docs for more complete (if outdated)
information

Blockchain

A “blockchain” in the simplest sense is a chain of blocks.
By chain, we each block is cryptographically linked to the
proceeding block, and through recursion we can securely query
the entire history from any block back to the genesis.
A block is a set of transactions, along with this link,
and some optional metadata that varies depending on the blockchain.

Immutable Event Log

If you are coming from working on typical databases, you can think
of the blockchain as an immutable
transaction log [https://en.wikipedia.org/wiki/Transaction_log] .
If you have worked with
Event Sourcing [https://martinfowler.com/eaaDev/EventSourcing.html]
you can consider a block as a set of events that can always be
replayed to create a materialized view [https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view] .
Maybe you have a more theoretical background and recognize that a blockchain
is a fault tolerant form of
state machine replication [https://en.wikipedia.org/wiki/State_machine_replication#Ordering_Inputs] .

In any case, the point is that given a node knows a block is
valid (more on that in consensus), it can
cryptographically prove it has the valid history of that block,
and then replay that sequence of blocks to reproduce the current state.
Many nodes performing this simultaneously create a
Byzantine Fault Tolerant [https://en.wikipedia.org/wiki/Byzantine_fault_tolerance] state machine.
Since (most) computer programs can be mapped to state machines,
we end up with an unstoppable world computer [https://www.ethereum.org/] .

This means we can trust that the blockchain and state represent the
proper functioning of whatever program we run on it. This allows
for extremely high levels of trust in a program, levels that were
previously reserved for highly controlled, centralized systems,
such as banks or governments. The first generation of blockchain, Bitcoin,
proved it was possible to run a system with many unknown and
mutually untrusting parties, yet produce a system that is harder to
hack than any bank (bitcoin hacks involve grabbing someone’s wallet,
not manipulating the blockchain). This was a true marvel of vision and
engineering and laid the stage for all future development, and many other
projects tried to fork bitcoin to create a custom blockchain.

General Purpose Computer

Ethereum pioneered the second generation of blockchain, where they
realized that we didn’t have to limit ourselves to handling payments,
but actually have a general purpose state machine. They wanted to
allow experimentation at a rate orders of magnitude faster than forking
bitcoin, and produced the EVM (Ethereum Virtual Machine) that can
run sandboxed code uploaded by any user. Since then, hundred of projects
have experimented with porting other types of logic to the blockchain,
and have demonstrated its utility for
decentralized governance [https://aragon.one/],
currency trading [https://0xproject.com/],
prediction markets [https://gnosis.pm/],
even collectible trading games [https://www.cryptokitties.co/]
and much more…

While Ethereum demonstrated the potential of blockchain technology
in many areas, we it also provided some
high profile examples [https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/]
of how hard it is to write secure contracts [https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838] .
As it became more popular, it also showed a popular application
can overload the capacity of the network [https://dealbreaker.com/2017/12/ethereum-the-crypto-network-that-will-transform-everything-struggles-to-handle-digital-beanie-babies/] .

Next Generation

Since that time, many groups are working on “next generation” solutions
that take the learnings of Ethereum and attempt to build a highly scalable
and secure blockchain that can run general purpose programs.
One pioneering project is Tendermint [https://tendermint.com/], which
provides a highly efficient, Byzantine Fault Tolerant blockchain engine
offering guaranteed finality in the order of 1-5 seconds. It was
designed from the ground up to allow many projects to easily
plug their application logic [https://tendermint.readthedocs.io/en/master/app-development.html#abci-design] into the engine.
Weave [https://github.com/iov-one/weave] is a framework that
provides many common tools to help you build ABCI apps rapidly.
You can just focus on writing the application logic and the interface
and rely on high quality and extensible libraries to solve most of
the difficult problems with building a blockchain.

Consensus

Consensus is the algorithm by which a set of computers come to
agreement on which possible state is correct, and thus guarantee
one consistent, global view of the state of the system.

Eventual finality

All PoW systems use eventual finality, where the resource cost
of creating a block is extremely high. After many blocks are gossiped,
the longest chain of blocks has the most work invested in it,
and thus is the true chain. The “true” head of the chain can switch,
in a process called “chain reorganization”. But the probability of such
a reorganization decreases exponentially the more blocks are built
on top of it. Thus, in Bitcoin, the “6 block rule” means that if there
are 6 blocks build on top of the block with your transaction, you can be
extremely confident that no chain reorganization will ever
generate a new true chain that does not include that block. Note this
is not a guarantee that it cannot happen, just that the cost of doing
so becomes so prohibitively high that is very unlikely to ever happen.

Many early PoS systems, such as BitShares, used voting instead of work
to mine blocks, but still used the “longest chain wins” consensus
algorithm. However, this has the critical
nothing at stake [https://github.com/ethereum/wiki/wiki/Problems#8-proof-of-stake] problem, since the cost of “mining”
blocks on 2, 3, or even 100 alternate chains is quite low.

Another issue here is that any state may have to be reverted, and the
data store must maintain an “undo history” to undo several blocks and
apply others. And clients must wait several blocks (minutes to hours)
before they can take off-chain actions based on the transaction
(eg. give you goods for a blockchain payment).

Immediate finality

An alternative approach used to guarantee constency comes out of
academic research into Byzantine Fault Tolerance from the 80s and 90s,
which “culminated” in PBFT [http://pmg.csail.mit.edu/papers/osdi99.pdf] .
Tendermint [https://tendermint.com/] uses an algorithm very similar
to PBFT with optimizations learned from blockchain developments
to create an extremely secure consensus algorithm. All nodes vote
in multiple rounds, and only produce blocks when they are guaranteed
that the block is the “correct” globally consensus. Even in the case
of omnipotent network manipulation, this algorithm will never produce
to blocks at the same height (a fork) if less than one third of the
nodes are actively collaborating to break the system. This is possibly the
strongest guarantee of any production blockchain consensus algorithm.

The benefit of this approach is that any block that has over two thirds
of the signature is provably correct by light clients [https://blog.cosmos.network/light-clients-in-tendermint-consensus-1237cfbda104]
The state is never rolled back and clients can take actions based on that
state. This opens the possibility of blockchain payments to be settled
in the order of a second or two, similar latency with using a credit
card in a store. It also allows reasonably responsive applications to
be built on a blockchain.

Authentication

One interesting attribute of blockchains is that there are no
trusted nodes, and all transactions are publicly visible
and can be copied. This naturally provides problem for
traditional means of authentication like passwords and cookies.
If you use your password to authorize one transaction, someone
can copy it to run any other. Or a node in the middle can even
change your transaction before writing to a block.

Thus, all authentication on blockchains is based on
public key cryptography [https://arstechnica.com/information-technology/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/],
in particularly cryptographic signatures based on
elliptic curves [https://hackernoon.com/eliptic-curve-crypto-the-basics-e8eb1e934dc5].
A client can locally generate a
public-private key pair, and share the public key with the world
as his/her identity (like a fingerprint). The client can then
take any message (text or binary) and generate a unique signature
with the private key. The signature can only be validated by the
corresponding message and public key and cannot be forged.
Any changes to the message will invalidate the signature and no
information is leaked to allow a malicious actor to impersonate
that client with a different message.

Main Algorithms

	RSA - the gold standard from 1977-2014, still secure and the most widely supported. not used for blockchains as signatures are 1-4KB

	secp256k1 - elliptic curve used in bitcoin and ethereum, signatures at 65-67 bytes

	ed25519 - popularized with libsodium and most standardized elliptic curve, signatures at 64 bytes

	bn256 - maybe the next curve… used by zcash [https://blog.z.cash/new-snark-curve/] for pairing cryptography and dfinity [https://medium.com/on-the-origin-of-smart-contract-platforms/on-the-origin-of-dfinity-526b4222eb4c#02dd] for BLS threshold signatures. in other words, they can do crazy magic math on this particular curve.

If you want to go deeper than what you can find on wikipedia and
google, I highly recommend buying a copy of Serious Cryptography
by Jean-Philippe Aumasson.

State Machine

Inside each block is a sequence of transactions to be applied
to a state machine (ran by a program). There is also the state
(database) representing the materialized view of all transactions
included in all blocks up to this point, as executed by
the state machine.

Upgrading the state machine

Of course, during the lifetime of the blockchain, we will want
to update the software and expand functionality. However,
the new software must also be able to re-run all transactions
since genesis (the birth of the chain) and produce the same
state as the active network that keeps updating software over time.
That means all historical blocks must be interpreted the same
by new and old clients.

Bitcoin classifies various approaches to upgrading as
soft forks [https://en.bitcoin.it/wiki/Softfork] or
hard forks [https://en.bitcoin.it/wiki/Hardfork].
Ethereum has a table defining the block height at which
various functionality changes [https://github.com/ethereum/go-ethereum/blob/master/params/config.go#L33-L45]
and add checks for the currently activated behavior [https://github.com/ethereum/go-ethereum/blob/master/core/vm/evm.go#L157-L166]
based on block height at various places. This allows one server to handle
multiple historical behaviors, but it can also add lots of dead code
over time…

UTXO vs Account Model

There are two main models used to store the current state.
The main model for bitcoin and similar chains is called
UTXO, or Unspent transaction output. Every transaction has
an input and an output, and the system must just check if the
inputs have been used yet. If they have not, they are marked
spent and the outputs created. If any have been spent, then the
transaction fails.

This provides interesting ways to obfuscate identity (but not
secure against sophisticated network analysis like ZCash),
and allows easy parallelization of the transaction processing.
However, it is quite hard to map non-payment systems (like
voting or breeding crypto-kitties) to such a system. It is used
mainly for focused payment networks.

The account model creates one account per public key address
and stores the information there. Sending money becomes
reducing the balance on one account and incrementing on another.
And many other more complex logic become easy to express, using
logic that many developers are used to from interacting with
databases or key-value stores.

The downside is that the account allows an observer to easy view
all activity by one key. Sure you have pseudoanonymity, but if you
make one payment to me, I now can see your entire investment and
voting history with little effort. Another downside is that
it become harder to parallelize transaction processing, as sending
from one account and receiving payments will conflict with each
other. In practice, no production chains use optimistic
concurrency on account based systems.

Merkle Proofs

Weave uses an account model much like Ethereum, and
leaves anonymity to other developments like
mixnets [https://en.wikipedia.org/wiki/Mix_network]
and zkSNARKs [https://z.cash/technology/zksnarks.html].

Under the hood, we use a key-value store, where different
modules write their data to different key-spaces. This is
not a normal key-value store (like redis or leveldb), but
rather merkle trees [https://www.codeproject.com/Articles/1176140/Understanding-Merkle-Trees-Why-use-them-who-uses-t].
Merkle trees are like binary trees, but hash the children at
each level. This allows us to provide a
proof as a chain of hashes [https://www.certificate-transparency.org/log-proofs-work]
the same height as the tree. This proof can guarantee that
a given key-value pair is in the tree with a given root hash.
This root hash is then added to a block header after running
the transactions, and validated by consensus.
If a client follows the headers [https://blog.cosmos.network/light-clients-in-tendermint-consensus-1237cfbda104], they
can securely verify if a node if providing them the correct data
for eg. their account balance.

In practice, the block header can maintain multiple hashes, each
one the merkle root of another tree. Thus, a client can use
a header to prove, state, presence of a transaction, or current
validator set.

Prepare Requirements

Before you can run this code, you need to have a number
of programs set up on your machine. In particular, you
will need a bash shell (or similar), and development tooling
for both go and node.

WARNING

This is only tested under Linux and OSX.
If you want to run under Windows, the only supported development environment
is using WSL (Windows Subsytem for Linux) under Windows 10.
Follow these directions [https://docs.microsoft.com/en-us/windows/wsl/install-win10]
to setup Ubuntu in WSL, then try the rest in your Ubuntu shell

Install Go

You will need to have the Go tooling installed, version 1.11.4+ (or 1.12).
If you do not already have it, please
download [https://golang.org/dl/] and
follow the instructions [https://golang.org/doc/install]
from the official Go language homepage. Make sure to read down
to Test Your Installation [https://golang.org/doc/install#testing].
(Note this is not included in Ubuntu apt tooling until 19.04)

We assume a standard setup in the Makefiles, especially to
build tendermint nicely. With go mod much of the go
configuration is unnecessary, but make sure to have the default
“install” directory in your PATH, so you can run the binaries
after compilation.

this line should be in .bashrc or similar
export PATH="$PATH:$HOME/go/bin"
this must report 1.11.4+
go version
this will properly place the code in $HOME/go/src/github.com/iov-one/weave
go get github.com/iov-one/weave

Go related tools

You must also make sure to have a few other developer tools
installed. If you are a developer in any language, they are
probably there. Just double check.
If not, a simple sudo apt get should provide them.

	git

	make

	curl

	jq

Installation

To run our system, we need two components:

	mycoind, our custom ABCI application

	tendermint, a powerful blockchain consensus engine

If you have never used tendermint before, you should
read the ABCI Overview [https://tendermint.com/docs/introduction/introduction.html#abci-overview]
and ideally through to the bottom of the page. The end result
is that we have three programs communicating:

+---------+ +------------+ +----------+
| mycoind | <- (local) ABCI -> | Tendermint | <- websocket -> | client |
+---------+ +------------+ +----------+

mycoind and tendermint run on the same computer and communicate via
a binary protocol over localhost or a unix socket. Together they form
a “blockchain”. In a real setup, you would have dozens (or hundreds)
of computers running this backend communicating over a self-adjusting
p2p gossip network to replicate the state. For application development
(and demos) one copy will work, but has none of the fault tolerance of a
real blockchain.

You can connect to tendermint rpc via various client libraries.
We recommend IOV Core which has very good support for
weave-based apps, as well as different blockchains (such as Ethereum and Lisk).

Install backend programs

You should have a proper go development environment, as explained
in the last section. Now, check out
the most recent version of iov-one/weave and build mycoind then get
the version 0.31.5 for tendermint from here [https://github.com/tendermint/tendermint/releases/tag/v0.31.5].
You can also build tendermint from source following the instructions
there [https://github.com/tendermint/tendermint/blob/master/docs/introduction/install.md]
but make sure to use the tag v0.31.5 as other versions might not be compatible.

Note we use go mod for dependency management. This is enabled by default in go 1.12+.
If you are running go 1.11.4+, you must run the following in the terminal (or add to ~/.bashrc):
export GO111MODULE=on

Those were the most recent versions as of the time of the writing,
your code should be a similar version. If you have an old version
of the code, you may have to delete it to force go to rebuild:

rm `which tendermint`
rm `which mycoind`

Initialize the Blockchain

Before we start the blockchain, we need to set up the initial state.
This is defined in a genesis block. Both tendermint and mycoind
have a directory to store configuration and internal database state.
By default those are ~/.tendermint and ~/.mycoind. However, to
make things simpler, we will ask them both to put everything in the
same directory.

First, we create a default genesis file, the private key for the
validator to sign blocks, and a default config file.

make sure you really don't care what was in this directory and...
rm -rf ~/.mycoind
tendermint init --home ~/.mycoind

You can take a look in this directory if you are curious. The most
important piece for us is ~/.mycoind/config/genesis.json.
You may also notice ~/.mycoind/config/config.toml with lots
of options to set [https://tendermint.com/docs/tendermint-core/configuration.html#options] for power users.

We want to add a bunch of tokens to the account we just made before
launching the blockchain. And we’d also like to enable the indexer,
so we can search for our transactions by id (default state is off).
But rather than have you fiddle with the config files by hand,
you can just run this to do the setup:

mycoind init CASH bech32:tiov1qrw95py2x7fzjw25euuqlj6dq6t0jahe7rh8wp

Make sure you enter the same hex address, this account gets the tokens.
You can take another look at ~/.mycoind/config/genesis.json after running
this command. The important change was to “app_state”. You can also
create this by hand later to give many people starting balances, but let’s
keep it simple for now and get something working. Feel free to
wipe out the directory later and reinitialize another blockchain with
custom configuration to experiment.

You may ask where this address comes from. It is a demo account derived from our test
mnemonic: dad kiss slogan offer outer bomb usual dream awkward jeans enlist mansion
using the hd derivation path: m/44'/234'/0'. This is the path used by our wallet,
so you can enter your mnemonic in our web-wallet and see this account.
Note that you can define the addresses both in hex: and bech32: formats
(if prefix is ommitted, hex is assumed)

Start the Blockchain

We have a private key and setup all the configuration.
The only thing left is to start this blockchain running.

tendermint node --home ~/.mycoind > ~/.mycoind/tendermint.log &
mycoind start

This connects over tcp://localhost:26658 by default, to use unix sockets
(arguably more secure), try the following:

tendermint node --home ~/.mycoind --proxy_app=unix://$HOME/abci.socket > ~/.mycoind/tendermint.log &
mycoind start -bind=unix://$HOME/abci.socket

Open a new window and type in tail -f ~/.mycoind/tendermint.log and you will be able to see the output.
That means the blockchain is working away and producing new blocks,
one a second.

[image: Log file]
Note: if you did anything funky during setup and managed to get yourself a rogue tendermint
node running in the background, you might encounter errors like panic: Error initializing DB: resource temporarily unavailable.
A quick killall tendermint should get you back on track.

Using IOV-Core Client

While the blockchain code is in the Go language, we have developed a TypeScript (javascript-compatible) client side sdk
in order to access the functionality of the blockchain. Iov-Core works for many blockchains, not just weave
(mycoind and bnsd), so take a look, it is useful for more than this demo

Installing Tooling

You will need node 8+ to run the example client. Unless you know what you
are doing, stick to even numbered versions (6, 8, 10, …), the odd numbers
are unstable and get deprecated every few weeks it seems. For ease
of updating later, I advise you to install nvm [https://github.com/creationix/nvm#installation] and then add the most recent stable version

this install most recent v8 version, use lts/dubnium for v10 track
nvm install lts/carbon

test it out
node --version
node
> let {x, y} = {x: 10, y:10}

Node related tools

Yarn is a faster alternative to npm for installing modules, so
we use that as default.

npm install -g yarn

Using Iov-Core

Please refer to the offical iov-core documentation [https://github.com/iov-one/iov-core/blob/master/packages/iov-core/README.md]
Note that you can use the BnsConnection to connect to a mycoind blockchain, as long as you restrict it to just sending tokens
and querying balances and nonces (it is a subset of bnsd). You may also find
iov-cli [https://github.com/iov-one/iov-core/blob/master/packages/iov-cli/README.md] a useful debug tool.
It is an enhanced version of the standard node REPL (interactive coding shell), but with support for
top-level await and type-checks on all function calls (you can code in typescript).

The iov-core [https://iov-one.github.io/iov-core-docs/latest/iov-core/index.html] library supports the concept of
user profiles and identities. An identity is a BIP39 [https://github.com/bitcoin/bips/tree/master/bip-0039] derived key.
Please refer to those docs and tutorials for a deeper dive, it is out of the scope of the weave documentation.

Configuring Tendermint

Tendermint docs provide a brief introduction [https://tendermint.com/docs/introduction/]
to the tendermint cli. By default all files are writen to
the ~/.tendermint directory, unless you override that with
a different “HOME” directory by providing TMHOME=xyz or tendermint --home=xyz.

When you call tendermint init, it generates a config and data directory under the “HOME” dir. data will contain all blockchain
state as well as the application state. config will contain
configuration files. There are three main files to look at:

	genesis.json must be shared by all validators on a chain and is used to
initialize the first block. We discuss this more in
Application Config

	config.toml is used to configure your local server, and can be
configured much in the way the config for apache or postgres,
to tune to your local system.

	priv_validator.json is used by any validating node to sign the blocks,
and must be kept secret. We discuss this more in the
next section.

Overriding Options

In general, any option you see in the configuration file [https://tendermint.readthedocs.io/en/master/specification/configuration.html]
can also be provided via command-line or environmental variable.
It is a simple conversion:

Config:

[rpc]
laddr = "tcp://0.0.0.0:8080"

Environment: export TM_RPC_LADDR=tcp://0.0.0.0:8080 or export TMRPC_LADDR=tcp://0.0.0.0:8080 (optional _ after TM)

Command line: tendermint --rpc.laddr=tcp://0.0.0.0:8080 ...

Important Options

There are many options to tune tendermint, but a few are quite
useful when configuring and deploying dev environements or testnets.
I will cover them here, but please take a longer look at
all available options [https://github.com/tendermint/tendermint/blob/master/config/config.go]. I use the command line format
for these options, as it seems the most readable, but most of
these should be writen to the config.toml file or stored in
environmental options in the service ini (if using 12-factor style).

Dev:
- --p2p.upnp --proxy_app noop: Don’t try to determine external address

(noop for local testing)

	--log_level=p2p:info,evidence:debug,consensus:info,*:error:
Set the log levels for different subsystems (debug, info, error)

	--tx_index.index_all_tags=true to enable indexing for search
and subscriptions. Should be on for public services,
off for validators to conserve resources.

	--prof_laddr=tcp://127.0.0.1:7777 to open up a profiling server
at this port for debugging

Testnet:
- --moniker=billy-bob chooses a name to display on the node list

to help understand the p2p network connections

	--mempool.recheck=false and --mempool.recheck_empty=false
limit rechecking all leftover tx in mempool, which can help
throughput at the expense of possibly invalid tx making it into blocks

	--rpc.laddr=tcp://0.0.0.0:46657 to change the interface or port
we expose the rpc server (what we expose to the world)

	--p2p.laddr=tcp://0.0.0.0:46656 to change the interface or port
we expose the p2p server (what we use to connect to other nodes)

	--p2p.seeds=tcp://12.34.56.78:46656,tcp://33.44.55.66:46656
to set the seed nodes we connect to on startup to discover the
rest of the p2p network

	p2p.pex=true turns on peer exchange, to allow us to
dynamically update the network

	--consensus.create_empty_blocks=false to only create a block when
there are tx (otherwise blockchain grows fast even with no activity)

	--consensus.create_empty_blocks_interval=300 to create a block
every 300s even if no tx

	--consensus.timeout_commit=5000 to set block interval to 5s (5000ms)
+ time it takes to achieve consensus (which is generally quite small
with < 20 or so well-connected validators)

Production:
- p2p.persistent_peers=tcp://77.77.77.77:46656 contains peers we

always remain connected to, regardless of peer exchange

	p2p.private_peer_ids=... contains peers we do not gossip.
this is essential if we have a non-validating node acting as a
buffer for a validating node

	--priv_validator_laddr=??? to use a socket to connect to an
hsm instead of using the priv_validator.json file

There are quite a few more options, but this is a good place to
get started, and you can dig in deeper once you see how these
numbers affect blockchains in practice.

Configuring the Application

The application is fed genesis.json the first time it starts up
via the InitChain ABCI message. There are three fields that
the application cares about:

	chain_id must be consistent on all nodes and distinct from all
other blockchains. This is used in the tx signatures to provide replay
protection from one chain and another

	validators are the initial set and should be stored if the app
wishes to dynamically adjust the validator set

	app_state contains a map of data, to set up the initial blockchain
state, such as initial balances and any accounts with special permissions.

App State

If the backend ABCI app is weave-based, such as mycoind or bns,
the app_state contains one key for each extension that it wishes
to initialize. Each element is an array of an extension-specific
format, which is fed into Initialized.FromGenesis from the
given extension.

Sample to set the balances of a few accounts:

"app_state": {
 "cash": [
 {
 "address": "849f0f5d8796f30fa95e8057f0ca596049112977",
 "coins": ["88888888 BNS"]
 },
 {
 "address": "9729455c431911c8da3f5745a251a6a399ccd6ed",
 "coins": ["7777777.666666 IOV"]
 }
]
}

This format is application-specific and extremely important to set
the initial conditions of a blockchain, as the data is one of the
largest distinguishing factors of a chain and a fork.

mycoind init will set up one account with a lot of tokens
of one name. For anything more complex, you will want to set this
up by hand. Note that you should make sure someone has saved
the private keys for all addresses or the tokens will never be
usable. Also, for cash, ticker must be 3 or 4 upper-case letters.

Setting the Validators

Since Tendermint uses a traditional BFT algorithm to reach
consensus on blocks, signatures from specified validator keys
replace hashes used to mine blocks in typical PoW chains.
This also means that the selection of validators is an extremely
important part of the blockchain security, and every validator
should have strong security in place to avoid their private keys
being copied or stolen.

Static Validators

In the simplest setup, every node can generate a private key with
tendermint init. Note that this is stored as a clear-text file
on the harddrive, so the machine should be well locked-down,
and file permissions double-checked. This file not only contains
the private key itself, but also information on the last block
proposal signed, to avoid double-signing blocks, even in the even of
a restart during one round.

Every validator can find their validator public key, which is
different than the public keys / addresses that are assigned tokens,
via:

cat ~/.mycoind/config/priv_validator.json | jq .pub_key

If you still have the default genesis file from tendermint init,
this public key should match the one validator registered for this
blockchain, so it can mint blocks all by itself.

cat ~/.mycoind/config/genesis.json | jq .validators

In a multi-node network, all validators would have to generate their
validator key separately, then share the public keys, and forge
a genesis file will all the public keys present. Over two-thirds of
these nodes must be online, connected to the p2p network, and
acting correctly to mint new blocks. Up to one-third faulty nodes
can be tolerated without any problems, and larger numbers of nodes
usually halt the network, rather than fork it of mint incorrect
blocks.

The Tendermint dev team has produced
a simple utility [https://github.com/tendermint/alpha] to help
gather these keys.

Note that this liveness requirement means that after initializing
the genesis and starting up tendermint on every node, they must
set proper --p2p.seeds in order to connect all the nodes and
get enough signatures gathered to mint the first block.

HSMs

If we really care about security, clearly a plaintext file on our
machine is not the best solution, regardless of the firewall
we put on it. For this reason, the tendermint team is working
on integrating Hardware Security Modules (HSM) that will maintain
the private key secret on specialized hardware, much like
people use the Ledger Nano hardware wallet for cryptocurrencies.

This is under active development, but please check the following
repos to see the current state:

	Signatory [https://github.com/tendermint/signatory]
provides a rust api exposing many curves to sign with

	YubiHSM [https://github.com/tendermint/yubihsm-rs]
provides bindings to a YubiKey HSM

	KMS [https://github.com/tendermint/kms]
is a work in progress to connect these crates via sockets
to a tendermint node.

TODO Update with current docs, now that cosmos mainnet is live
and some people are actually using this.

Dynamic Validators

A static validator set in the genesis file is quite useless for
a real network that is not just a testnet. Tendermint allows
the ABCI application to send back messages to update the validator
set at the end of every block. Weave-based applications can take
advantage of this and implement any algorithm they want to
select the validators, such as:

	PoA [https://github.com/iov-one/weave/issues/32]
where a set of keys (held by clients) can appoint the validators.
This allows them to bring up and down machines, but the authority
of the chain rests in a fixed group of individuals.

	PoS or proof-of-stake, where any individual can bond some of
their tokens to an escrow for the right to select a validator.
Each validator has a voting power proportional to how much is
staked. These staked tokens also receive some share of the block
rewards as compensation for the work and risk.

	DPoS where users can either bond tokens to their own
validator, or “delegate” their tokens to a validator run by
someone else. Everyone gets some share of the block rewards, but
the people running the validator nodes typically take a
commission on the delegated rewards, as they must perform real work.

For each of these general approaches there is a wide range
of tuning of incentives and punishments in order to achieve
the desired level of usability and security.

The only current implementation shipping with weave is
a POA implementation [https://godoc.org/github.com/iov-one/weave/x/validators#ApplyDiffMsg]
allowing some master key (can be a multisig or even an election) update the validator
set. This can support systems from testnets to those with strong on-chain governance,
but doesn’t work for the PoS fluid market-based solution.

If you wish to build an extension supporting PoS, previous
related work from cosmos-sdk can be found in their
simple stake [https://github.com/cosmos/cosmos-sdk/tree/v0.15.1/x/simplestake]
implementation and the
more complicated DPoS implementation [https://github.com/cosmos/cosmos-sdk/tree/master/x/staking]
with incentive mechanisms.

Guiding Design Principles

Before we get into the structure of the application, there are
a few design principles for weave (but also tendermint apps in general)
that we must keep in mind. If you are coming from developing
web servers or microservices, some of these are counter-intuitive.
(Eg. you cannot make external API calls and concurrency is limited)

Determinism

The big key to blockchain development is determinism.
Two binaries with the same state must ALWAYS produce
the same result when passed a given transaction. This
seems obvious, but this also occurs when the transactions
are replayed weeks, months, or years by a new version,
attempting to replay the blockchain.

	You cannot relay on walltime (just the timestamp in the header)

	No usage of floating point math

	No random numbers!

	No network calls (especially external APIs)!

	No concurrency (unless you really know what you are doing)

	JSON encoding in the storage is questionable, as the key order may change with newer JSON libraries.

	Etc….

The summary is that everything is executed sequentially and
deterministically, and thus we require extremely fast
transaction processing to enable high throughput. Aim for
1-2 ms per transaction, including committing to disk at
the end of the block. Thus, attention to performance is
very important.

ABCI

To understand this design, you should first understand
what an ABCI application is and how that level blockchain
abstraction works. ABCI is the interface between the
tendermint daemon and the state machine that processes
the transactions, something akin to wsgi as the interface
between apache/nginx and a django application.

There is an

in-depth reference [https://tendermint.readthedocs.io/en/master/app-development.html]
to the ABCI protocol, but in short, an ABCI application
is a state machine that responds to messages sent from one
client (the tendermint consensus engine). It is run in
parallel on every node, and they must all run the same
set of transactions (what was included in the blocks),
and then verify they have the same result (merkle root).

The main messages that you need to be concerned with are:

	Validation - CheckTx

Before including a transaction, or gossiping it to peers,
every node will call CheckTx to check if it is valid.
This should be a best-attempt filter, we may reject
transactions that are included in the block, but this
should eliminate much spam

	Execution of Blocks

After a block is written to the chain, the tendermint
engine makes a number of calls to process it. These
are our hooks to make any writes to the datastore.

	BeginBlock

BeginBlock provides the new header and block height.
You can also use this as a hook to trigger any
delayed tasks that will execute at a given height.
(see Ticker below)

	DeliverTx - once per transaction

DeliverTx is passed the raw bytes, just like CheckTx,
but it is expected to process the transactions and write
the state changes to the key-value store. This is
the most important call to trigger any state change.

	EndBlock

After all transactions have been processed, EndBlock is
a place to communicate any configuration changes the
application wishes to make on the tendermint engine.
This can be changes to the validator set that signs the
next block, or changes to the consensus parameters,
like max block size, max numbers of transactions per
block, etc.

	Commit

After all results are returned, a Commit message is sent
to flush all data to disk. This is an atomic operation,
and after a crash, the state should be that after
executing block H entirely, or block H+1
entirely, never somewhere in between (or else you are
punished by rebuilding the blockchain state by
replaying the entire chain from genesis…)

	Query

A client also wishes to read the state.
To do so, they may query arbitrary keys in the
datastore, and get the current value stored there. They may
also fix a recent height to query, so they can guarantee to
get a consistent snapshot between multiple queries even if
a block was committed in the meantime.

A client may also request that the node returns a merkle
proof for the key-value pair. This proof is a series of
hashes, and produces a unique root hash after passing the
key-value pair through the list. If this root hash matches
the AppHash stored in a blockheader, we know that this
value was agreed upon by consensus, and we can trust this
is the true value of the chain, regardless of whether we
trust the node we connect to.

If you are interested, you can read more about using
validating light clients with tendermint [https://blog.cosmos.network/light-clients-in-tendermint-consensus-1237cfbda104]

Persistence

All data structures that go over the wire (passed on any
external interface, or saved to the key value store),
must be able to be serialized and de-serialized. An
application may have any custom binary format it wants,
and to support this flexibility, we provide a Persistent
interface to handle marshaling similar to the
encoding/json library.

type Persistent interface {
 Marshal() ([]byte, error)
 Unmarshal([]byte) error
}

Note that Marshal can work with a struct, while Unmarshal
(almost) always requires a pointer to work properly.
You may define these two functions for every persistent
data structure in your code, using any codec you want.
However, for simplicity and cross-language parsing
on the client size, we recommend to define .proto
files and compile them with protobuf.

gogo protobuf [https://github.com/gogo/protobuf] will autogenerate
Marshal and Unmarshal functions requiring no reflection.
See the Makefile [https://github.com/iov-one/weave/blob/master/Makefile] for tools and
protoc which show how to automate installing the
protobuf compiler and compiling the files.

However, if you have another favorite codec, feel free to
use that. Or mix and match. Each struct can use it’s own
Marshaller.

Index

Old Index

[image: Weave Logo]
IOV Weave [https://github.com/iov-one/weave]
is a framework to quickly build your custom
ABCI application [https://github.com/tendermint/abci]
to power a blockchain based on the best-of-class BFT Proof-of-stake
Tendermint consensus engine [https://tendermint.com].
It provides much commonly used functionality that can
quickly be imported in your custom chain, as well as a
simple framework for adding the custom functionality unique
to your project.

Blockchain Basics

Some background material to help you get oriented with the
concepts behind blockchains in general and tendermint/weave
in particular. It is quite helpful to have a basic
understanding of these concepts before trying to build on weave.

	Blockchain
	Immutable Event Log

	General Purpose Computer

	Next Generation

	Consensus
	Eventual finality

	Immediate finality

	Authentication
	Main Algorithms

	State Machine
	Upgrading the state machine

	UTXO vs Account Model

	Merkle Proofs

Mycoin Tutorial

Weave comes with a simple cryptocurrency application,
mycoin showing how to set up and use a blockchain with a
multi-currency wallet. This is the basis on which many
other applications can build and the simplest useful
example to understand the tooling. For all those who like
learning by doing, this will help you understand the power
of the framework

	Prepare Requirements
	Install Go

	Installation
	Install backend programs

	Initialize the Blockchain

	Start the Blockchain

	Using IOV-Core Client
	Installing Tooling

	Using Iov-Core

Deployment

A brief introduction into how to deploy a blockchain app.
Once you compile the code, hwo do you run it?

	Tooling

Weave Architecture

Once you understand the concepts and can run and interact
with a sample app, now it is time for you to extend the
codebase and write your own blockchain-based application.
Here is a primer to help you understand the architecture
and the various components you will use

	Guiding Design Principles
	Determinism

	ABCI

	Persistence

	Addresses and Authorization
	Authentication

	Conditions

	Addresses

	Queries
	ABCI Format

	Weave Request Types

	Weave Response Types

	Usage In Extensions

	Merkle Proofs

	Extension Design
	Extension Functionality

	App Framework

Backend Development Tutorial

To make this theory more tangible, we will build a sample
application alongside this tutorial, to demonstrate dealing
with real-world constraints. The application is located in the
tutorial repository [https://github.com/iov-one/tutorial],
to show how to create a self-contained app.

In this tutorial, you will learn how to serialize and model
you data structures, define messages and handlers, expose
queries, and read initial configuration from the genesis file.
You will be able to build a new extension and tie it together
with other extensions into a complete blockchain application.

	Using Protobuf Codecs
	Create Proto File

	Compiling Proto Files

	Using Autogenerated Structs

	Notes about oneof

	Defining the Data Model
	Define the Domain

	Select Primary Keys

	Compile Protobuf

	Using Buckets

	Secondary Indexes

	Sequences

	Defining Messages
	Messages vs. Transactions

	Defining Messages

	Validation

	Message Handlers
	Check vs Deliver

	Writing a Handler

	Validation

	Check

	Deliver

	Routing Messages to Handler

	Testing Handlers

	Processing Queries

	Initial State

	Tying it together

	Advanced Customizations

Tooling

Once we have the tendermint and application binaries and
have hand-crafted or automated all the config files,
we need to start up a bunch of machines and connect them
into a p2p network to power a blockchain.
How do we do this easily?

The best place to start is by looking at
tendermints own tooling [https://tendermint.readthedocs.io/en/master/deploy-testnets.html].

Please add notes to what parts of that works well, and any
weave-specific

Extension Design

IOV weave [https://github.com/iov-one/weave] doesn’t just
produce a mycoind executable, but was designed from the
group up to be extremely flexible for many common use cases.
One can easily extend the functionality of mycoind
by adding more extensions on top of it, which
we do when building the full-fledged
bnsd [https://github.com/iov-one/weave/tree/master/cmd/bnsd/] application,
which will form the basis of the iov [https://iov.one] blockchain.
You can also chose not to import any of the modules of
mycoind and just use the building blocks to build an
entirely different system (like utxo chain).

Note that even pieces as fundamental as
signature validation [https://github.com/iov-one/weave/tree/master/x/sigs]
or isolating failed transactions [https://github.com/iov-one/weave/blob/master/x/utils/savepoint.go] are implemented as importable modules and wired up
together when you construct the application.

Extension Functionality

Most code to extend the basic framework is packaged as extensions and
stored in packages under the x directory. One can ignore all code
under x and still build a complete weave-compatible application,
these are just some pieces that many chains would like to reuse.
You can import these extensions, or write you own, with the same
power and functionality.

When you write a weave-based application (covered in the next section),
you will likely want to create a few new extensions to add new
functionality tied into why your chain is unique. What types of
behavior can you customize?

	Handler - process transactions, maintain local state, control state transitions. Sending coins is an example of a Handler

	Decorator (aka Middleware) - do some pre-processing and update the context with information to influence eventual Handler. Signature validation is an example of a Decorator.

	Initializer - Provide a function to initialize the data store based on a section of the app_state in the genesis file

	Handle ABCI calls - app.BaseApp implements abci.Application and you

can wrap it with a pure ABCI Middleware to do things like record timing information on the Commit or Info calls, without forking the code.

App Framework

If weave allows you to customize everything, what does it provide?

ORM - the orm package wraps up the merkle tree, provable kv-store provided by
tendermint iavl [https://github.com/tendermint/iavl] and adds convenient features on top,
like CacheWrap to isolate read/writes of a transaction before deciding to Write or Discard,
and provides type-safe data storage and secondary indexes if you write to an orm.Bucket.
In fact, even if you want to build your own framework from scratch, take a look about using
orm and iavl together to provide storage

ABCI Adapter the app package builds on top of the orm to
provide default implementations for many of the abci calls, and parses
the other ones to allow us to handle requests easier with internal functions.
One one hand, it adapts the format, so we can do things like locally
return changes to the validator set during DeliverTx (when we calculate
it), but return the final change on EndBlock (when tendermint
expects the response). It also handles routing transactions and queries
to various modules rather than one monolith. This package demonstrates
where most of the main interfaces are used for.

Handlers and Decorators A Handler defines what actions to perform
in response to a transaction in either CheckTx or DeliverTx. The app
package also allows us to ChainDecorators and register multiple
Handlers on a Router to separate processing logic based
on the contents of the transaction.

Error Handling The errors package provides some nice helpers
to produce error return values that conform to both pkg/errors
(allowing a full stack trace in testing or deployment using
fmt.Printf("%+v", err)), as well as maintaining an ABCI error code
to be returned on the result. We can pass around typical error
objects in the code, which work well with debugging, logging,
and the ABCI interface.

Serialization Standard Weave defines simple
Marshaller [https://github.com/iov-one/weave/blob/master/tx.go#L28-L35] and
Persistent [https://github.com/iov-one/weave/blob/master/tx.go#L37-L48] interface standards. These interfaces are automatically
implemented by any code autogenerated by protoc from protobuf files.
This allows us to easily define serialization in an efficient and
extremely portable manner (protobuf has support in every major
language and platform). However, the interfaces don’t force protobuf
and you can define these two methods on any object to provide
a custom serialization format as desired. This should allow interoperability
with the Application and Handler code with any serialization library
you wish to use.

Addresses and Authorization

When controlling the execution of a transaction, there are
two things to consider, authentication and authorization.
The first, authentication, deals with verifying who
is requesting the executions. The second, authorization,
deals with the access controls on the action, which can
refer to the authentication information.

Authentication

Authentication information is added to the context as part
of the middleware stack, and used to verify the caller.
The simplest example is signature verification. We check
if the signature validates against a known public key, and
after checking nonces for replay protection, can authenticate
this public key for this transaction.

However, Ethereum devs are used to the concept of authority
not just being tied to a signature, but potentially a smart
contract. We will allow something similar, but we don’t need
to be as general, as we also don’t have the same general
“anyone can call anything” architecture, nor do we run
untrusted code.

We use multiple middlewares to check for various conditions on
the transaction and add the authentication information to the
Context. The basic example, x/sigs.Middleware, checks
if the Tx has signatures, and if so validates them.

// SignedTx represents a transaction that contains signatures,
// which can be verified by the auth.Decorator
type SignedTx interface {
	// GetSignBytes returns the canonical byte representation of the Msg.
	// Equivalent to weave.MustMarshal(tx.GetMsg()) if Msg has a deterministic
	// serialization.
	//
	// Helpful to store original, unparsed bytes here, just in case.
	GetSignBytes() ([]byte, error)

	// Signatures returns the signature of signers who signed the Msg.
	GetSignatures() []*StdSignature
}

It stores the matching conditions in the context under a secret
key, and exposes an Authenticator that can be used to read
this information.

type contextKey int // local to the auth module

const (
	contextKeySigners contextKey = iota
)

// withSigners is a private method, as only this module
// can add a signer
func withSigners(ctx weave.Context, signers []weave.Condition) weave.Context {
	return context.WithValue(ctx, contextKeySigners, signers)
}

// Authenticate implements x.Authenticator and provides
// authentication based on public-key signatures.
type Authenticate struct{}

var _ x.Authenticator = Authenticate{}

// GetConditions returns who signed the current Context.
// May be empty
func (a Authenticate) GetConditions(ctx weave.Context) []weave.Condition {
	// (val, ok) form to return nil instead of panic if unset
	val, _ := ctx.Value(contextKeySigners).([]weave.Condition)
	// if we were paranoid about our own code, we would deep-copy
	// the signers here
	return val
}

And finally, when we create a module that needs to read
authentication info, we can pass in the handler, so it can use
check authentication info from this middleware.

var _ weave.Handler = SendHandler{}

// NewSendHandler creates a handler for SendMsg
func NewSendHandler(auth x.Authenticator, control Controller) SendHandler {
	return SendHandler{
		auth: auth,

Note that this means that we don’t let any extension authenticate
any action, but rather each extension can define which
other extensions it “trusts” to authenticate its actions.

Extending Authentication

This system may look to complicated for just checking public key signatures, but it is designed to be flexible and allow
multiple authentication schemes. For example, if we want to
design HTLC, we could add an optional “Preimage” to the
Tx structure. We add a “Hasher” middleware that hashes
this preimage, and then grants the condition of something like
hash/sha256/<hash of preimage>. This is stored in the context
and the “Hasher” exports an Authenticator that allows
access to this.

Once we build this “Hasher” extension, we can import it
into any other handler, to add the potential for hash preimages,
not just public key signatures, to grant certain permissions.
For some handlers this is not useful, so we can select it for
each handler. Of course, we don’t want either/or, we often want
to support both authentication schemes. For this, there
is MulitAuth, to combine them:

// MultiAuth chains together many Authenticators into one
type MultiAuth struct {
	impls []Authenticator
}

var _ Authenticator = MultiAuth{}

// ChainAuth groups together a series of Authenticator
func ChainAuth(impls ...Authenticator) MultiAuth {
	return MultiAuth{impls}
}

Crypto-Conditions

I am not the first one to try to build a generalized authentication
system for blockchain technology. Probably the most developed /
standardized proposal is Crypto-Conditions, which exists as
an IETF Draft [https://tools.ietf.org/html/draft-thomas-crypto-conditions-02#section-7]
as well as working implementations in multiple languages [https://github.com/rfcs/crypto-conditions].

This area needs more research and we can either adopt them verbatim
or build a similar system. I have heard they are a bit difficult
to use, and also don’t support some design choices we may want
(like using secp256k1 signatures, scrypt for hashing). But the
idea to have a general format to combine different conditions
in a boolean circuit is powerful. eg.
(signature A and preimage H) OR Threshold(2, [Signature A, Signature B, Signature C]).
We could use this to provide a very simple DSL for
defining multi-sig wallets, recovery phrases, etc.

Conditions

Authentication defines who is requesting this transaction
and is added to the context as part of the middleware stack.
I will refer to the set of Authentications on a transaction as
the “requester”, which may be made of signatures, preimages,
or other objects.

Authorization happens in a handler, where it decides if
the transaction can execute this transaction. It determines
if the transaction fulfills the necessary conditions to
assume the required permission to execute the action.

Permission is the right to perform a specific type of action,
like send tokens from an account, or release an escrow. These
permissions can be assigned to an individual, but more general
to a “Condition”

Conditions define what checks a transaction must fulfill to be
able to access a given permission. They must be serializable and
can be stored along with an object.

The simplest example is “who can transfer money out of an account”.
In many blockchains, they hash the public key and use that
to form an “address”. Then this address is used as a primary key
to an account balance. A user can send tokens to any address,
and if I have signed with a public key, which hashes to the
“address” of this account, then I can authorize payments out of
the account. In this case, the signature is authentication,
we must have transfer permission on this account, and the
condition is the presence of a signature with a public key
that hashes to the account’s address.

In Ethereum, smart contracts also have addresses and can be
used as a condition, not just signatures. So, we can imagine
a variety of different conditions that can be required, not
just signatures. A hash preimage, the majority of votes
in an election, or presence of a merkle proof could be evaluated
by various middlewares and used as conditions to assume
given permissions. And one object / account could have
multiple different permissions.

Serialization

Now we have a clear understanding of what conditions are
in this context, and that there may be different conditions
on one object, we need to consider how to store them in the
database. A condition can be considered a tuple of
(extension, type, data), for example a ed25519 public key
signature could be represented as ("sigs", "ed25519", <addr>)
and a sha256 hashlock could be ("hash", "sha256", <hash>).

Note that the “data” doesn’t need to reveal what the data is that
will match this condition, but needs to be calculated from
it (eg. addr is first 20 bytes of a hash of the public key).
And each extension and type may have different interpretations
of the data.

If we enforce simple text for extension and type, we could
encode it as sprintf("%s/%s/%X", extension, type, data).
This is longer than the 20 bytes often used for addresses, and
maybe we could hash it first, but then we loose information.
I can envision a user wanting to know if an account is controlled
by a private key, a hash preimage, or another contract. If I am
going to set up an escrow with the same arbiter as you on another
chain to do atomic swap, I want to make sure that it is controlled
by a hash preimage (which you must reveal), not your private key
(which would not let me collect the other escrow).

Addresses

We started with a simple address function, which was the first
20 bytes of the sha256 hash of a public key. However, this
left no room for other authentication mechanisms, and it
wasn’t even clear how we could differentiate between ed25519
and secp256k1 signatures. However, the usecase was clear:
a short identifier that was uniquely tied to an authentication
condition, but did not reveal that condition.

We can redefine address to be the hash of a “condition”,
not just public key bytes, and then we keep this functionality
while generalizing what a condition is.

condition := sprintf("%s/%s/%X", extension, type, data)
address := sha256(condition)[:20]

The questions is when and how to use each one. Any field that can
declare an owner must decide if those bytes represent a condition
or an address. The Authenticator can store fulfilled Conditions
in the Context, and then allow clients to check for matches either
by condition or by address. But where to use which one?

Here are some rough guidelines:

	If we really need to save 20 bytes, use an Address. (But few places need that micro-optimization)

	If we need visibility of control, use Condition (multi-sig solutions, arbiters, etc)

	If you want to obscure control (until first use), use Address

	Everything else, at your discretion, but prefer Address when possible for consistency.

I guess it is up to the extension developer, but I would generally
use Conditions for anything stored in the value and Address for
fields that appear in the key, unless there is a reason otherwise.

Cash: Key is Address

Sigs: Key is PublicKey (data section of Condition). We
construct a condition from it, then can compute the address.

Escrow: Sender and Receiver are Addresses, arbiter is defined by a Condition
in order to allow easy verification if it is a public key signature, a hash preimage,
or a multisig contract controlling the escrow.

Queries

Once transactions are executed on the blockchain, we would like
to be able to query the new state of the system. The ABCI interface
and tendermint rpc expose a standard query functionality for
key-value pairs. Weave provides more advanced queries,
such as over ranges of data, prefix searches, and queries on
secondary indexes. To do so, we also need to provide a specification
for the query request and response format that goes beyond raw
bytes.

ABCI Format

type RequestQuery struct {
 Data []byte // also known as "key"
 Path string
 Height int64
 Prove bool
}

The request uses Height to select which block height to query and
Prove to determine if we should also return merkle proofs for the
response. Note that “block height to query” is shorthand for “query the
state produced after executing all transactions included in all blocks
up to and including Height”. For various reasons internal to
tendermint, the root hash of this state is included as AppHash
in the block at Height+1.

The actual data that we wish to read is declared in Path
and Data. Path defines what kind of query this is, much like the
path in an http get request. Data is an arbitrary argument. In
the typical case, Path = /key and Data = <key bytes> to directly
query a given key in the merkle tree. However, if you wish to query
the account balance, you will have to know how we define the account
keys internally.

type ResponseQuery struct {
 Code uint32
 Log string
 Info string
 Index int64
 Key []byte
 Value []byte
 Proof []byte
 Height int64
}

That’s a lot of fields… let’s skip through them. Code is set to
non-zero only when there is an error in processing the query.
Log and Info are human readable strings for debugging or extra
info. Index may be the location of this key in the merkle tree,
but that is not well defined.

Now to the important ones. Height, as above, the the block height
of the tree we queried and is always set, even if the query had 0 to
request “most recent”. Key is the key of the merkle tree we got,
Value is the value stored at that key (may be empty if there
is no value), and Proof is a merkle proof in an undefined format.

Weave Request Types

As we see above, the request format doesn’t actually define what
possible types are for either Path or Data and leaves it up to
the application. This is good for a generic query interface,
but to allow better code reuse between weave extensions, as
well as ease of development of weave clients, we define a
standard here for all weave modules.

Constructing Paths

Paths includes the resource we want to get:

	Raw Key: /

	Bucket: /[bucket]

	Index: /[bucket]/[index]

By default, we expect Data to include a raw key to match in
that context. However, we can also append a modifier to change
that behavior:

	?prefix => Data is a raw prefix (query returns N results, all items that start with this prefix)

Examples

namecoin.NewWalletBucket [https://github.com/iov-one/weave/blob/master/x/namecoin/wallet.go#L107-L113]
adds and a name field to the account, along with a secondary index.
It is registered under /wallets [https://github.com/iov-one/weave/blob/master/x/namecoin/handler.go#L52-L57]
in the QueryHandler.

	Path: /, Data: 0123456789 (hex):

	db.Get(0123456789)

	Path: /wallets, Data: 00CAFE00 (hex):

	namecoin.NewWalletBucket().Get(00CAFE00)

	Path: /wallets/name, Data: “John” (raw):

	namecoin.NewWalletBucket().Index(“name”).Get(“John”)

	Path: /?prefix, Data: 0123456789 (hex):

	db.Iterator(0123456789, 012345678A)

Weave Response Types

Some queries return single responses, others multiple. Rather
that some complex switch statement in either the client or
the application, the simplest approach is to learn from other
databases, and always return a ResultSet. A higher-level
client wrapper can provide nicer interfaces, but this provides
a consistent format they can build on.

	Key: {key*}

	Value: {value*}

Key and value may have 0 to N elements, but they must have the
same length. For any index i, Result.i = {Key.i, Value.i}.
We define a simple protobuf format for ResultSet, which is
used both in Key and Value, which has some helper methods
to iterate over the pairs joined into Models.

Usage In Extensions

A given app can hard-code the handler for /, and ?prefix,
but we need a way to register these with the root handler.
The app.StoreApp.Query method can use a lookup from Path
to handler. It will strip of the modifier (if any first), and
call into a handler like:

type QueryHandler interface {
 Query(modifier string, data []byte) Iterator
}

These then can be registered with a Router that also
implements QueryHandler, just as we use app.Router and
define RegisterRoutes in each extension. We just add
another method RegisterQueries.

Merkle Proofs

Proofs are not yet implemented as of weave v0.14
This is both due to prioritization of other features,
and also as we wish to provide a solid proof format that is
useful for IBC as well, and watching cosmos-sdk development
so we can maintain compatibility. As this format is recently
stabilized inside the cosmos hub, implementation in weave
should not be too far off.

Flow of Transactions

Weave implements the complexity of the ABCI interface
for you and only exposes a few key points for you to add
your custom logic. We provide you a default merklized
key value store [https://github.com/iov-one/weave/blob/master/store/iavl/adapter.go] to store all the data, which exposes
a simple interface, similar to LevelDB.

When you create a new BaseApp [https://github.com/iov-one/weave/blob/master/app/base.go#L22-L33], you must provide:

	a merkelized data store (default provided)

	a txdecoder to parse the incoming transaction bytes

	a handler that processes CheckTx and DeliverTx (like http.Handler)

	and optionally a Ticker that is called every BeginBlock if you have repeated tasks.

The merkelized data store automatically supports Queries
(with proofs), and the initial handshake to sync with
tendermint on startup.

Transactions

A transaction must be Persistent and
contain the message we wish to process, as well as an
envelope. It implements the minimal Tx interface,
and can also implement a number of additional
interfaces to be compatible with the particular middleware
stack in use in your application. For example, supporting
the x/sigs/Decorator [https://github.com/iov-one/weave/blob/master/x/sigs/decorator.go#L53]
or the x/cash/FeeDecorator [https://github.com/iov-one/weave/blob/master/x/cash/staticfee.go#L114]
require a Tx that fulfills interfaces to expose the signer
or the fee information.

Once the transaction has been processed by the middleware
stack, we can call GetMsg() to extract the actual
message with the action we wish to perform.

Handler

As mentioned above, we pass every Tx through a middleware
stack to perform standard processing and checks on all
transactions. However, only the Tx is validated, we need
to pass the underlying message to the specific code to handle
this action.

We do so by taking inspiration from standard http Routers.
Every message object must implement Path() , which
returns a string used by the Router in order
to find the proper Handler. The Handler is
then responsible for processing any message type that
is registered with it.

type Handler interface {
 Check(ctx context.Context, store weave.KVStore, tx weave.Tx) (*weave.CheckResult, error)
 Deliver(ctx context.Context, store weave.KVStore, tx weave.Tx) (*weave.DeliverResult, error)
}

The Handler is provided with the key-value store
for reading/writing, the context containing scope
information set by the various middlewares, as well as
the complete Tx struct. Typically, the Handler
will just want to GetMsg() and cast the Msg
to the expected type, before processing it.

Although the syntax of Check and Deliver is very similar,
the actual semantics is quite different, especially
in the case of handlers. (Middleware may want to perform
similar checks in both cases). Check only needs to
investigate if it is likely valid (signed by the proper
accounts), and then return the estimated “cost” of
executing the Msg relative to other Msgs. It does
not need to execute the code.

In turn, Deliver actually executes the expected actions
based on the information stored in the Msg and the
current state in the KVStore. Context should be used
to validate and possibly reject transactions, but outside
of querying the block height if needed, really should not
have any influence on the actual data written to the
data store.

Ticker

This is provided to handle delayed tasks.
For example, at height 100, you can trigger a task
“send 100 coins to Bob at height 200 if there is no
proof of lying before then”.

This is called at the beginning of every block, before
executing the transactions. It must be deterministic and
only triggered by actions identically on all nodes,
meaning triggered by querying for certain conditions in the
merkle store. We plan to provide some utilities to help
store and execute these delayed tasks.

Note: While the basic hooks are implemented to call such a ticker,
this functionality is not in use in any of the apps in the weave
repository, largely due to concerns of extra complexity and difficulty
to prove correctness of extensions.

Merkle Store

A key value store with merkle proofs [https://en.wikipedia.org/wiki/Merkle_tree].

The two most widely known examples in go are:

	Tendermint IAVL [https://github.com/tendermint/iavl]

	Ethereum Patricia Trie [https://github.com/ethereum/wiki/wiki/Patricia-Tree]

We require an interface similar to LevelDB, with
Get/Set/Delete, as well as an Iterator over a range of keys.
In the future, we aim to build wrappers on top of this
basic interface to provide functionality more akin to
Redis or even some sort of secondary indexes like a RDBMS.

The reason we cannot use a more powerful engine as a backing
is the need for merkle proofs. We use these for two reasons.
The first is that after executing a block of transactions,
all nodes check the merkle root of their new state and come
to consensus on that. If there is no consensus on the new
state, the blockchain will halt until this is resolved
(either many malicous nodes, or a very buggy code).
Merkle roots, allow a quick, incremental update of a
hash of a very large data store.

The other reason we use merkle proofs, is to be able to prove
the internal state to light clients, which may be able to
follow and prove all the headers, but unable or unwilling
to execute every transaction. If a node gives me a value
for a given key, that data is only as trustable as the node
itself. However, if the node can provide a merkle proof from
that key-value pair to a root hash, and that root hash is
included in a trusted header, signed by the super majority
of the validators, then the response is a trustable as the
chain itself, regardless of whether the node we communicate
is trustworthy or not.

Advanced Customizations

TODO

Describe some possible advanced use cases:

	BeginBlock - triggering delayed actions

	Validator Diffs - how to manage that

	Custom Decorators - why and how

Defining the Data Model

The first thing we consider is the data we want to store
(the state). After that we can focus on the messages,
which trigger state transitions. All blockchain state must
be stored in our merkle-ized store, that can provide
validity hashes and proofs. This is exposed to the application
as a basic key-value store, which also allows in-order
iteration over the keys. On top of this, we have built some
tools like secondary indexes and sequences, in a similar
manner to how
storm adds a orm [https://github.com/asdine/storm#simple-crud-system]
on top of
boltdb’s kv store [https://github.com/boltdb/bolt#using-buckets].
We have avoided struct tags and tried to type as strictly as
we can (without using generics).

Define the Domain

Let us build a simple blog application. We will allow multiple
blogs to exist, each one registering a unique name, and each blog
may have a series of posts. The blog may contain rules as to who
(which public keys) may post on that blog. We will also allow
people to optionally register a profile tied to their public key
to present themselves. We will not add comments, likes, or other
features in order to keep the scope manageable. But we do
immediately see that there are some 1:N relationship and secondary
key lookups needed, so this is non-trivial and can provide a
decent example for a real application.

What data do we need to store?

	Blog: Unique name (slug), Full title, List of allowed authors

	Post: Link to blog (with sequence), Title, Text, Author, Date

	Profile: Link to author, Name, Description, Link to Posts

Select Primary Keys

Some of this data belongs in the primary key, the rest in the value.
Weave introduces the concept of an
Object [https://github.com/iov-one/weave/blob/master/orm/interfaces.go#L8-L21]
which contains a Key ([]byte) and Value (Persistent struct).
It can be cloned and validated. When we query we will receive
this object, so we can place some critical information in the Key
and expect it to always be present.

The primary key must be a unique identifier and it should be the
main way we want to access the data. Let’s break down the four
models above into keys and
protobuf models [https://github.com/iov-one/weave/blob/master/examples/tutorial/x/blog/state.proto]:

Blog

Key: Use the unique name (slug) as the primary key.

Post

Key: Use (blog slug, index) as composite primary key. This allows
us to guarantee uniqueness and efficiently paginate through all
posts on a given blog.

Profile

Key: Use (author address) as primary key.

Compile Protobuf

We add the compilation steps into our [Makefile](https://github.com/iov-one/weave/blob/master/examples/tutorial/Makefile):

Now we run make protoc to generate the
go objects [https://github.com/iov-one/weave/blob/master/examples/tutorial/x/blog/state.pb.go].
(You will have to add and run the prototools section if you are
using your own repo, we inherit that from root weave Makefile).

Using Buckets

When running your handlers, you get access to the root
KVStore [https://godoc.org/github.com/iov-one/weave#KVStore],
which is an abstraction level similar to boltdb or leveldb.
An extenstion can opt-in to using one or more
Buckets [https://godoc.org/github.com/iov-one/weave/orm#Bucket]
to store the data. Buckets offer the following advantages:

	Isolation between extensions (each Bucket has a unique prefix that is transparently prepended to the keys)

	Type safety (enforce all data stored in a Bucket is the same type, to avoid parse errors later on)

	Indexes (Buckets are well integrated with the secondary indexes and keep them in sync every time data is modified)

	Querying (Buckets can easily register query handlers including prefix queries and secondary index queries)

All extensions from weave use Buckets, so for compatibility as
well as the features, please use Buckets in your app, unless you
have a very good reason not to (and know what you are doing).

To do so, you will have to wrap your state data structures into
Objects [https://godoc.org/github.com/iov-one/weave/orm#Object].
The simplest way is to use SimpleObj:

// It can be used as a template for type-safe objects
type SimpleObj struct {
	key []byte
	value Model

And extend your protobuf objects to implement
CloneableData [https://godoc.org/github.com/iov-one/weave/orm#CloneableData]:

This basically consists of adding Copy() and Validate()
to the objects in state.pb.go. Just create a
models.go [https://github.com/iov-one/weave/blob/master/examples/tutorial/x/blog/models.go]
file and add extra methods to the auto-generated structs.
If we don’t care about validation, this can be as simple as:

// enforce that Post fulfils desired interface compile-time
var _ orm.CloneableData = (*Post)(nil)

// Validate enforces limits of text and title size
func (p *Post) Validate() error {
 // TODO
 return nil
}

// Copy makes a new Post with the same data
func (p *Post) Copy() orm.CloneableData {
 return &Post{
 Title: p.Title,
 Author: p.Author,
 Text: p.Text,
 CreationBlock: p.CreationBlock,
 }
}

Validating Models

We will want to fill in these Validate methods to enforce
any invariants we demand of the data to keep our database clean.
Anyone who has spent much time dealing with production
applications knows how “invalid data” can start creeping in
without a strict database schema, this is what we do in code.

We can do some basic checks and return an error if none of them
pass:

Errors

What is with these ErrXYZ() calls you may think? Well, we
could return a “normal” error like errors.New("fail"),
but we wanted two more features. First of all, it helps
debugging enormously to have a stack trace of where the error
originally occurred. For this we use
pkg/errors [https://github.com/pkg/errors]
that attaches a stacktrace to the error that can optionally
be printed later with a Printf("%+v", err).
We also want to return a unique abci error code, which may be
interpreted by client applications, either programmatically
or to provide translations of the error message client side.

For these reasons, weave provides some utility methods
and common error types in the
errors [https://godoc.org/github.com/iov-one/weave/errors]
package. The ABCI Code attached to the error is then
returned in the DeliverTx Result [https://github.com/iov-one/weave/blob/master/abci.go#L92-L104].

Every package can define it’s own custom error types and
error codes, generally in a file called
errors.go [https://github.com/iov-one/weave/blob/master/examples/tutorial/x/blog/errors.go]. The key elements are:

// ABCI Response Codes
// tutorial reserves 400 ~ 420.
const (
 CodeInvalidText uint32 = 400
)

var (
 errTitleTooLong = fmt.Errorf("Title is too long")
 errInvalidAuthorCount = fmt.Errorf("Invalid number of blog authors")
)

// Error code with no arguments, check on code not particular type
func ErrTitleTooLong() error {
 return errors.WithCode(errTitleTooLong, CodeInvalidText)
}
func IsInvalidTextError(err error) bool {
 return errors.HasErrorCode(err, CodeInvalidText)
}

// You can also prepend a variable message using WithLog
func ErrInvalidAuthorCount(count int) error {
 msg := fmt.Sprintf("authors=%d", count)
 return errors.WithLog(msg, errInvalidAuthorCount, CodeInvalidAuthor)
}

Take a deeper look at the file and if you start using that pattern
you will see the nicer debug messages, usable error codes, and
the ability to check the type of error in your test code without
resorting to string comparisons.

Custom Bucket

We want to enforce the data consistency on the buckets. All
data is validated before saving, but we also need to make sure
that all data is the proper type of object before saving.
Unfortunately, this is quite difficult to do compile-time
without generic, so a typical approach is to embed the
orm.Bucket [https://godoc.org/github.com/iov-one/weave/orm#Bucket]
in another struct and just force validation of the object type
runtime before save.

Secondary Indexes

Sometimes we need another index for the data. Generally, we
will look up a post from the blog it belongs to and it’s
index in the blog. But what if we want to list all posts by
one author over all blogs? For this, we need to add a secondary
index on the posts to query by author. This is a typical case
and weave provides nice support for this functionality.

We add a indexing method to take any object, enforce the type
to be a proper Post, then extract the index we want. This
can be a field, or any deterministic transformation of
one (or multiple) fields. The output of the index becomes a
key in another query. Bucket provides a simple
method to query by index [https://godoc.org/github.com/iov-one/weave/orm#Bucket.GetIndexed]. You can query by name like:

posts, err := bucket.GetIndexed(db, "author", address)

This will return a (possibly empty) list of Objects
(keys and values) that have an author index matching the query.

Sequences

You can also add an auto-incrementing sequence to a bucket.
That isn’t so important in this case, but if you are curious
how to use it, take a look at the
escrow bucket in bcp-demo [https://github.com/iov-one/bcp-demo/blob/master/x/escrow/model.go#L99-L122].

Message Handlers

A message is a statement of intention, and wrapped in a transaction,
while provides authorization to this intention. Once this message
ends up in the ABCI application and is to be processed, we send it
to a Handler [https://godoc.org/github.com/iov-one/weave#Handler],
which we have registered for this application.

Check vs Deliver

If you look at the definition of a Handler, you will see it is
responsible for Check and Deliver. These are similar logic, but
there is an important distinction. Check is performed when
a client proposes the transaction to the mempool, before it is
added to a block. It is meant as a quick filter to weed out garbage
transactions before writing them to the blockchain. The state it
provides is a scratch buffer around the last committed state and
will be discarded next block, so any writes here are never written
to disk.

Deliver is performed after the transaction was written to
the block. Upon consensus, every node will process the block
by calling BeginBlock, Deliver for every transaction in the block,
and finally EndBlock and Commit. Deliver will be called in
the same order on every node and must make the exact same changes
on every node, both now and in the future when the blocks are
replayed. Even the slightest deviation will cause the merkle root
of the store at the end of the block to differ with other nodes,
and thus kick the deviating nodes out of consensus.
(Note that Check may actually vary between nodes without breaking
consensus rules, although we generally keep this deterministic as well).

This is a very powerful concept and means that when modifying a given state,
users must not worry about any concurrent access or writing collision
since by definition, any write access is guaranteed to occur sequentially and
in the same order on each node.

Writing a Handler

We usually can write a separate handler for each message type,
although you can register multiple messages with the same
handler if you reuse most of the code. Let’s focus on the
simplest cases, and the handlers for creating a Blog and
adding a Post to an existing blog.

Note that we can generally assume that Handlers are wrapped
by a Savepoint Decorator,
and that if Deliver returns an error after updating some
objects, those update will be discarded. This means you can
treat Handlers as atomic actions, all or none, and not worry
too much about cleaning up partially finished state changes
if a later portion fails.

Validation

Remember that we have to fulfill both Check and Deliver methods,
and they share most of the same validation logic. A typical
approach is to define a validate method that parses the
proper message out of the transaction, verify all authorization
preconditions are fulfilled by the transaction, and possibly
check the current state of the blockchain to see if the action
is allowed. If the validate method doesn’t return an error,
then Check will return the expected cost of the transaction,
while Deliver will actually perform the action and update
the blockchain state accordingly.

Blog

Let us take a look at a first validation example when creating
a blog :

Before anything, we want to make sure that the transaction is allowed
and in the case of Blog creation, we choose to consider the main Tx signer
as the blog author. This is easily achieved using existing util functions :

Next comes the model validation as described in the
Data Model section [https://weave.readthedocs.io/en/latest/tutorial/messages.html#validation],
and finally we want to make sure that the blog is unique. The example below shows
how to do that by querying the BlogBucket :

Post

In the case of adding a post, we must first validate
that the transaction hold the proper message, the message
passes all internal validation checks, the blog named
in the message exists in our state, and the author both
signed this transaction and belongs to authorized authors
for this blog… What a mouthful. Since validate must load
the relevant blog for authorization, which we may want to use
elsewhere in the Handler as well, we return it from the validate
call as well to avoid loading it twice.

Note how we ensure that the post author is one of the Tx signers :

Check

Once validate is implemented, Check must ensure it is valid
and then return a rough cost of the message, which may be based
on the storage cost of the text of the post. This return value
is similar to the concept of gas in ethereum, although it doesn’t
count to the fees yet, but rather is used by tendermint to prioritize
the transactions to fit in a block.

Blog

A blog costs one gas to create :

Post

In the case of a Post creation, we decided to charge the author 1 gas
per mile characters with the first 1000 characters offered :

Deliver

Similarly to Check, Deliver also makes use of validate to perform the original
checks.

Blog

Before saving the blog into the blog bucket, Deliver checks if the main signer
of the Tx is part of the authorized authors for this blog and will add it if not.

Post

Deliver increments the article count on the Blog, and
calculates the key of the Post based on the Blog slug and the count
of this article. It then saves both the Post and the updated Blog.
Note how the Handler has access to the height of the current block
being processes (which is deterministic in contrast to a timestamp),
and can attach that to the Post to allow a client to get a timestamp
from the relevant header. (Actually the Handler has access to the full
header, which contains a timestamp,
which may or may not be reliable [https://github.com/tendermint/tendermint/issues/1146].)

Let us recall that when incrementing the article count on the parent blog, we don’t
have to worry about concurrential access, nor use any synchronisation mechanism : We are guaranteed
that each Check and Deliver method will be executed sequentially and in the same order on each node.

Finally, note how we generate the composite key for the post by concatenating the blog slug and
the blog count :

Routing Messages to Handler

After defining all the Messages, along with Handlers for them all,
we need to make sure the application knows about them. When we
instantiate an application, we define a
Router and then register all handlers [https://github.com/iov-one/weave/blob/master/examples/mycoind/app/app.go#L56-L62]
we are interested in. This allows the application
to explicitly state, not only which messages it supports
(in the Tx struct), but also which business logic will process
each message.

In order to make it easy for applications to register our extension as
one piece and not worry about attaching every Handler we provide,
it is common practice for an extension to provide a RegisterRoutes
function that will take a Router (or the more permissive Registry
interface), and any information it needs to construct instances
of all the handlers. This RegisterRoutes function is responsible
for instantiating all the Handlers with the desired configuration
and attaching them to the Router to process the matching
Message type (identified by it’s Path):

Testing Handlers

	In order to test a handler, we need four things :

	
	A storage

	A weave context

	An Authenticator associated with our context

	A Tx object to process (eg. to check or to deliver)

There is a ready to use in memory storage available in
the store package [https://github.com/iov-one/weave/blob/master/store/btree.go#L31-L36].
There are also util functions available that we can use to create a weave context with a
list of signers (eg. authorized addresses) via an Authenticator [https://weave.readthedocs.io/en/latest/design/permissions.html].
The function below shows how to use them :

Last but not least, there is a helper function allowing to create a Tx object from a message :

Now that we have all the pieces, let us put them together and
write tests.

First we start by defining a pattern that we will follow in all our tests to make
easier for the reader to navigate through them.
A function to test a handler Check method would look like this :

func Test[HandlerName]Check(t *testing.T) {

 1 - generate keys to use in the test

 k1 := weavetest.NewCondition()
 // ...
 kN := weavetest.NewCondition()

 2 - call testHandlerCheck withs testcases as below

 testHandlerCheck(
 t,
 []testcase{
 // testcase1
 // testcase2
 // ...
 // testcaseN
 })
}

And for the Deliver method, like that :

func Test[HandlerName]Deliver(t *testing.T) {

 1 - generate keys to use in the test

 k1 := weavetest.NewCondition()
 // ...
 kN := weavetest.NewCondition()

 2 - call testHandlerDeliver withs testcases as below

 testHandlerDeliver(
 t,
 []testcase{
 // testcase1
 // testcase2
 // ...
 // testcaseN
 })
}

Our test functions rely on small utilities defined at the top of the test file, mainly,
a testcase struct to hold the data required for a test :

A generic test runner for the Check method of a handler :

And one for the Deliver method of a handler :

The generic test runners help reducing boilerplates in tests by taking care of saving dependencies
prior to running a test, and making asserts on the data returned upon completion.
For example when creating a new Post, we need to save the corresponding Blog first, and upon completion,
we need to retrieve both the Post and the Blog we saved to ensure they’re inline with our expectations.

Here is how a test would look like for the Check method of the CreateBlogMsg handler :

As stated above, the test implementation consists in defining the keys and test cases to be used.
Util functions take care of the remaining.

Let’s take a look at another example with the test for the Deliver method
of the CreateBlogMsgHandler struct :

It is very similar to what we saw before. One thing to notice here is that we specify
the dependencies required, in this case, a Blog object.
We also specify the objects we expect this test to deliver so we can assert whether
or not they have been delivered correctly.

Initial State

TODO

Tying it together

TODO

Defining Messages

We just discussed messages, which are persistent objects
requiring validation, which are stored in our local
key-value store. Messages are requests for a change in the
state, the action part of a transaction. They also need
to be persisted (to be sent over the wire and stored on the
blockchain), and must also be validated. They later are passed
into Handlers [https://godoc.org/github.com/iov-one/weave#Handler]
to be processed and effect change in the blockchain state.

Messages vs. Transactions

A message is a request to make change and this is the basic
element of a blockchain. A transaction contains a message
along with metadata and authorization information, such
as fees, signatures, nonces, and time-to-live.

A Transaction [https://godoc.org/github.com/iov-one/weave#Tx]
is fundamentally defined as anything persistent that holds a message:

type Tx interface {
 Persistent
 // GetMsg returns the action we wish to communicate
 GetMsg() (Msg, error)
}

And every application can extend it with additional functionality,
such as
Signatures [https://godoc.org/github.com/iov-one/weave/x/sigs#SignedTx],
Fees [https://godoc.org/github.com/iov-one/weave/x/cash#FeeTx],
or anything else your application needs. The data placed in the
Transaction is meant to be anything that applies to all modules, and
is processed by a Middleware.

A Message [https://godoc.org/github.com/iov-one/weave#Msg]
is also persistent and can be pretty much anything that an
extension defines, as it also defines the
Handler [https://godoc.org/github.com/iov-one/weave#Handler]
to process it. The only necessary feature of a Message is
that it can return a Path() string which allows us to
route it to the proper Handler.

When we define a concrete transaction type for one application,
we define it in protobuf with a set of possible messages that
it can contain. Every application can add optional field to the
transaction and allow a different set of messages, and the
Handlers and Decorators work orthogonally to this, regardless
of the concrete Transaction type.

Defining Messages

Messages are similar to the POST endpoints in a typical
API. They are the only way to effect a change in the system.
Ignoring the issue of authentication and rate limitation,
which is handled by the Decorators / Middleware, when we design
Messages, we focus on all possible state transitions and the
information they need to proceed.

In the blog example, we can imagine:

	Create Blog

	Update Blog Title

	Add/Remove Blog Author

	Create Post

	Create Profile

	Modify Profile (which may be merged with above)

We can create a protobuf message for
each of these types [https://github.com/iov-one/weave/blob/master/examples/tutorial/x/blog/messages.proto]:

And then add a Path method that
returns a constant [https://github.com/iov-one/weave/blob/master/examples/tutorial/x/blog/msgs.go]
based on the type:

Validation

While validation for data models is much more like SQL constraints:
“max length 20”, “not null”, “constaint foo > 3”, validation for
messages is validating potentially malicious data coming in from
external sources and should be validated more thoroughly.
One may want to use regexp to avoid control characters or null bytes
in a “string” input. Maybe restrict it to alphanumeric or ascii
characters, strip out html, or allow full utf-8. Addresses must be
checked to be the valid length. Amount being sent to be positive
(else I send you -5 ETH and we have a TakeMsg, instead of SendMsg).

The validation on Messages should be a lot more thorough and well
tested than the validation on data models, which is as much documentation
of acceptable values as it is runtime security.

Using Protobuf Codecs

Weave defines simple
Marshaller [https://github.com/iov-one/weave/blob/master/tx.go#L21-L28] and
Persistent [https://github.com/iov-one/weave/blob/master/tx.go#L30-L41] interface standards. These interfaces are automatically
implemented by any code autogenerated by protoc from protobuf files,
and we recommend using .proto files to specify the serialization
format for any persistent data in our application (internal state
as well as transactions and messages). However, if you have never
worked with protobuf, this might be a bit of a challenge, so we
explain a simple workflow that we use in weave based projects.

Create Proto File

The first thing is to imagine the shape of your classes.
These should be defined in proto3 [https://developers.google.com/protocol-buffers/docs/proto3] syntax.
There are a number of different int encodings, byte slices,
strings, and nested structures. And fields may be repeated.
So forget complex types with methods now and just focus on
the actual data structure. The x/codec.proto [https://github.com/iov-one/weave/blob/master/x/codec.proto] file defines the Coin type rather simply,
once you remove the comments, this is all that is left:

syntax = "proto3";

package x;

message Coin {
 int64 whole = 1; // default: 0
 int64 fractional = 2; // default: 0
 string ticker = 3;
 string issuer = 4; // optional
}

Or the app/results.proto [https://github.com/iov-one/weave/blob/master/app/results.proto] file, that defines an array of byte slices:

syntax = "proto3";

package app;

// ResultSet contains a list of keys or values
message ResultSet {
 repeated bytes results = 1;
}

Note that the package defined in the protobuf file must match the
package name used by the Go language code in the same directory.

You can also import types from one proto file into another.
Make sure to use the full github path in order that the generated
go code has properly working imports. The package name above is
also used as a namespace for the imported protobuf definitions.
This is how x/cash [https://github.com/iov-one/weave/blob/master/x/cash/codec.proto] creates a wallet that contains an
array of tokens of different currencies.

syntax = "proto3";

package cash;

import "github.com/iov-one/weave/x/codec.proto";

// Set may contain Coin of many different currencies.
// It handles adding and subtracting sets of currencies.
message Set {
 repeated x.Coin coins = 1;
}

Compiling Proto Files

To compile protobuf files, you need to have the
protoc [https://github.com/google/protobuf#protocol-compiler-installation]
binary installed and a language-specific translator
(gogo-protobuf [https://github.com/gogo/protobuf] in this case).
This can be a bit of a pain, especially the first time, so the default
weave `Makefile < https://github.com/iov-one/weave/blob/master/Makefile>`_
contains some helpers for you.

	make prototools will install all the needed tools, perform once to set up your machine

	make protoc will compile all the _.proto_ files in the repo

If you are building a repo based on weave, you are invited to copy the
bottom part of the Makefile and just copy the make prototools logic
verbatim. Let’s take a look at the second phase, as this is the one you
will have to modify when you add a new protobuf file, either to weave
or to your own repo.

protoc:
 protoc --gogofaster_out=. app/*.proto
 protoc --gogofaster_out=. crypto/*.proto
 protoc --gogofaster_out=. orm/*.proto
 protoc --gogofaster_out=. x/*.proto
 protoc --gogofaster_out=. -I=. -I=$(GOPATH)/src x/cash/*.proto
 protoc --gogofaster_out=. -I=. -I=$(GOPATH)/src x/sigs/*.proto

First, you notice that we need the protoc executable that we installed
with prototools. Next you notice the --gogofaster_out=. flag.
This indicated that we should use protoc-gen-gogofaster to generate
the code (we installed the driver in $GOBIN during the prototools
step). Also, that the output file will be placed in the same directory as
the input file. So app/results.proto produces app/results.pb.go.

The first few lines should make sense now, but what is with the
-I=. -I=$(GOPATH)/src flags used in the last two lines? These
.proto files import other _.proto_ files and _protoc_ needs to know
where to find them. Since we want the generated code to use absolute
paths, we have to import them with their absolute path from the
root of our _GOPATH_, thus: -I=$(GOPATH)/src. If you just add
that one, it will fail with the following message, which can be
resolved by adding -I=. as well:

x/sigs/codec.proto: File does not reside within any path specified using
--proto_path (or -I). You must specify a --proto_path which encompasses
this file. Note that the proto_path must be an exact prefix of the
.proto file names -- protoc is too dumb to figure out when two paths
(e.g. absolute and relative) are equivalent (it's harder than you think).

You are welcome to use other codecs than gogofaster, you can also
try the standard Go language protobuf compiler. What this mode goes is
auto-generate static code for serialization and deserialization of the
type. It performs the introspection one time to generate efficient code
allowing us to avoid the use of reflection at runtime and get ~10x
speed ups in the serialization/deserialization. I like this, but
this may vary based on your preference or aversion of auto-generated code.

Using Autogenerated Structs

The first time through the above process may appear tedious, but once you
get the hang of it, you just have to add a few lines to a _.proto_ file
and type make protoc. Et viola! You have a bunch of fresh *.pb.go
files that provide efficient, portable serialization for your code.

But how do you use those structs? Taking Coin from x/codec.proto
as an example, we see a x/codec.pb.go file with type Coin struct {...}
that very closely mirrors the content of the codec.proto file, as
well as a number of methods. There are some auto-generated getters,
which can be useful to fulfill interfaces or to query field
of _nil_ objects without panicking. And then there are some (very long)
Marshal and Unmarshal methods. These are the meat of the matter.
They fulfill the Persistent [https://github.com/iov-one/weave/blob/master/tx.go#L30-L41]
interface and let us write code like this:

orig := Coin{Whole: 123, Ticker: "CASH"}
bz, err := orig.Marshal()
parsed := Coin{}
err = parsed.Unmarshal(bz)

This is fine, but what happens when I want to add custom logic to
my Coin struct, perhaps adding validation logic, or code
to add two coins? Luckily for us, go allows you two write methods
for your structs in any file in the same package. That means that
we can just inherit the struct definition and all the serialization
logic and just append the methods we care about.
coin.go [https://github.com/iov-one/weave/blob/master/x/coin.go]
is a great example of extending the functionality, with code like:

func (c Coin) Add(o Coin) (Coin, error) {
 if !c.SameType(o) {
 err := ErrInvalidCurrency(c.Ticker, o.Ticker)
 return Coin{}, err
 }
 c.Whole += o.Whole
 c.Fractional += o.Fractional
 return c.normalize()
}

func (c Coin) Validate() error {
 if !IsCC(c.Ticker) {
 return ErrInvalidCurrency(c.Ticker)
 }
 if c.Whole < MinInt || c.Whole > MaxInt {
 return ErrOutOfRange(c)
 }
 if c.Fractional < MinFrac || c.Fractional > MaxFrac {
 return ErrOutOfRange(c)
 }
 // make sure signs match
 if c.Whole != 0 && c.Fractional != 0 &&
 ((c.Whole > 0) != (c.Fractional > 0)) {
 return ErrMismatchedSign(c)
 }

 return nil
}

This is a quite productive workflow and I recommend trying it out.
You may find it doesn’t work for you and you can try other approaches,
like copying the protobuf generated structs into some custom-writen
structs you like and then copying back into protobuf structs for
serialization. You can also try playing with special
gogo-protobuf [https://github.com/gogo/protobuf/blob/master/extensions.md] flags in your
protobuf files to shape the autogenerated code into the exact shape
you want.

Notes about oneof

oneof is a powerful feature to produce union/sum types in your
protobuf structures. For example, you may have a public key which
may be one of many different algorithms, and can define cases for each,
which can be swtiched upon in runtime. We also use this for the
transaction to enumerate a set of possible messages that can be
embedded in the transaction. A transaction may have any one of them
and serialize and deserialize properly. Type-safety is enforced
in compile-time and we can switch on the kind on runtime, quite nice.
(Example from bcp-demo [https://github.com/iov-one/bcp-demo/blob/master/app/codec.proto]):

oneof sum{
 cash.SendMsg send_msg = 1;
 namecoin.CreateTokenMsg new_token_msg = 2;
 namecoin.SetWalletNameMsg set_name_msg = 3;
 escrow.CreateMsg create_escrow_msg = 4;
 escrow.ReleaseMsg release_escrow_msg = 5;
 escrow.ReturnMsg return_escrow_msg = 6;
 escrow.UpdatePartiesMsg update_escrow_msg = 7;
}

The only problem is that the generated code is ugly to some people’s eyes.
This lies in the fact that there is no clean way to express sum types in
golang, and you have to force an interface with private methods in order
to close the set of possible types. Although some people have been
so revolted by this code that they prefered to
write their own serialization library [https://github.com/tendermint/go-amino],
I would suggest just taking the breath and getting to know it.
Here are the relevant pieces:

type Tx struct {
 // msg is a sum type over all allowed messages on this chain.
 //
 // Types that are valid to be assigned to Sum:
 // *Tx_SendMsg
 // *Tx_CreateTokenMsg
 // *Tx_SetNameMsg
 // *Tx_CreateMsg
 // *Tx_ReleaseMsg
 // *Tx_ReturnMsg
 // *Tx_UpdateEscrowMsg
 Sum isTx_Sum `protobuf_oneof:"sum"`
...
}

type isTx_Sum interface {
 isTx_Sum()
 MarshalTo([]byte) (int, error)
 Size() int
}

type Tx_SendMsg struct {
 SendMsg *cash.SendMsg `protobuf:"bytes,1,opt,name=send_msg,json=sendMsg,oneof"`
}
type Tx_CreateTokenMsg struct {
 CreateTokenMsg *namecoin.CreateTokenMsg `protobuf:"bytes,2,opt,name=new_token_msg,json=newTokenMsg,oneof"`
}

We now have some intermediate structs that give us a layer of indirection
in order to enforce the fact we can now securely switch over all
possible tx.Sum fields, with
code like this [https://github.com/iov-one/bcp-demo/blob/master/app/tx.go#L33-61]:

sum := tx.GetSum()
switch t := sum.(type) {
case *Tx_SendMsg:
 return t.SendMsg, nil
case *Tx_SetNameMsg:
 return t.SetNameMsg, nil
case *Tx_CreateTokenMsg:
 return t.CreateTokenMsg, nil
case *Tx_CreateMsg:
 return t.CreateMsg, nil
case *Tx_ReleaseMsg:
 return t.ReleaseMsg, nil
case *Tx_ReturnMsg:
 return t.ReturnMsg, nil
case *Tx_UpdateEscrowMsg:
 return t.UpdateEscrowMsg, nil
}

Processing Queries

We don’t only want to modify data, but allow the clients
to query the current state. Clients can call /abci_query
to tendermint which will make a
Query [https://github.com/iov-one/weave/blob/master/app/store.go#L192-L263]
request on the weave application.

Note how it uses a
QueryRouter [https://godoc.org/github.com/iov-one/weave#QueryRouter]
to send queries to different
QueryHandlers [https://godoc.org/github.com/iov-one/weave#QueryHandler]
based on their Path? It just happens that Buckets implement
the QueryHandler interface, and now that we understand how
RegisterRoutes work, this should be quite simple.

When constructing the application, we register QueryHandlers from
every extension we support onto a main QueryRouter that handles
all requests. Each extension is responsible for registering it’s
Bucket (or Buckets) under appropriate paths. Here we see how
the escrow extension
registers its bucket [https://github.com/iov-one/bcp-demo/blob/master/x/escrow/handler.go#L31-L35]
to handle all queries for the /escrows path:

// RegisterQuery will register this bucket as "/escrows"
func RegisterQuery(qr weave.QueryRouter) {
 NewBucket().Register("escrows", qr)
}

	To summarize :

	
	Because we are using buckets, we get queries for free

	This is true for primary indexes but also for any secondary index registered

	This is also true for prefix queries

	We only need to setup our bucket properly and attach it to the QueryRouter

Back to our blog example, let us start by registering our bucket queries :

That’s pretty much it, we can now query blogs, posts and profiles by their primary keys, and posts
by author as we have defined this index previously.
Here is an example of querying a Blog from our tests :

Similarly for a Post :

In case no results are returned by a query, we’ll get back an empty slice :

Finally, here is an example of a query by secondary index. In this case,
we want all the Posts authored by signer :

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/img/tail-log.png
E[2019-05-09]22:02:21.221] abci.socketClient failed to connect to tcp://127.0.0.1:26658. Retrying... module=abci-client connection=query err="dial tcp 127.0.0.1:26658: connect: conn
ection refused"

I1[2019-05-09|22:02:24.253] Version info module=main software=0.31.5 block=10 p2p=7

I1[2019-05-09|22:02:24.273] Starting Node module=main impl=Node

E[2019-05-09|22:02:24.274] Couldn't connect to any seeds module=p2p

I1[2019-05-09|22:02:24.280] Started node module=main nodeInfo="{ProtocolVersion:{P2P:7 Block:10 App:0} ID :d5e64e4clldad3829450a57aed50568e80a51635 Lis
tenAddr:tcp://0.0.0.0:26656 Network:test-chain-5gyKUc Version:0.31.5 Channels:4020212223303800 Moniker:xpsl15 Other:{TxIndex:on RPCAddress:tcp://0.0.0.0:26657}}"
I1[2019-05-09|22:02:25.336] Executed block module=state height=1 validTxs=0 invalidTxs=0

1[2019-05-09]|22:02:25.343] Committed state module=state height=1 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:26.386] Executed block module=state height=2 validTxs=0 invalidTxs=0

1[2019-05-09]|22:02:26.393] Committed state module=state height=2 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:27.437] Executed block module=state height=3 validTxs=0 invalidTxs=0

1[2019-05-09|22:02:27.443] Committed state module=state height=3 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:28.482] Executed block module=state height=4 validTxs=0 invalidTxs=0

1[2019-05-09|22:02:28.488] Committed state module=state height=4 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:29.535] Executed block module=state height=5 validTxs=0 invalidTxs=0

1[2019-05-09]|22:02:29.541] Committed state module=state height=5 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:30.582] Executed block module=state height=6 validTxs=0 invalidTxs=0

I1[2019-05-09(22:02:30.588] Committed state module=state height=6 txs=0 appHash=7D3D269613294FDF8CO9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC

nav.xhtml

 Table of Contents

 		
 Welcome to IOV Weave’s documentation!

_images/tail-log.png
E[2019-05-09]22:02:21.221] abci.socketClient failed to connect to tcp://127.0.0.1:26658. Retrying... module=abci-client connection=query err="dial tcp 127.0.0.1:26658: connect: conn
ection refused"

I1[2019-05-09|22:02:24.253] Version info module=main software=0.31.5 block=10 p2p=7

I1[2019-05-09|22:02:24.273] Starting Node module=main impl=Node

E[2019-05-09|22:02:24.274] Couldn't connect to any seeds module=p2p

I1[2019-05-09|22:02:24.280] Started node module=main nodeInfo="{ProtocolVersion:{P2P:7 Block:10 App:0} ID :d5e64e4clldad3829450a57aed50568e80a51635 Lis
tenAddr:tcp://0.0.0.0:26656 Network:test-chain-5gyKUc Version:0.31.5 Channels:4020212223303800 Moniker:xpsl15 Other:{TxIndex:on RPCAddress:tcp://0.0.0.0:26657}}"
I1[2019-05-09|22:02:25.336] Executed block module=state height=1 validTxs=0 invalidTxs=0

1[2019-05-09]|22:02:25.343] Committed state module=state height=1 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:26.386] Executed block module=state height=2 validTxs=0 invalidTxs=0

1[2019-05-09]|22:02:26.393] Committed state module=state height=2 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:27.437] Executed block module=state height=3 validTxs=0 invalidTxs=0

1[2019-05-09|22:02:27.443] Committed state module=state height=3 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:28.482] Executed block module=state height=4 validTxs=0 invalidTxs=0

1[2019-05-09|22:02:28.488] Committed state module=state height=4 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:29.535] Executed block module=state height=5 validTxs=0 invalidTxs=0

1[2019-05-09]|22:02:29.541] Committed state module=state height=5 txs=0 appHash=7D3D269613294FDF8C9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC
I1[2019-05-09|22:02:30.582] Executed block module=state height=6 validTxs=0 invalidTxs=0

I1[2019-05-09(22:02:30.588] Committed state module=state height=6 txs=0 appHash=7D3D269613294FDF8CO9BB4FD73C06942F5D2D619816B331FCC74D39EA74C7ECC

_images/weave-logo.jpg
wedve

_static/img/weave-logo.jpg
wedve

